

E-ISSN: 2708-1508
P-ISSN: 2708-1494
Impact Factor (RJIF): 5.39
IJCRS 2026; 8(1): 12-14
www.casereportsofsurgery.com
Received: 17-11-2025
Accepted: 23-12-2025

Si Jia Wee
Woodlands Health Campus, 17
Woodlands Dr 17, Singapore

Wei Chong Chua
Woodlands Health Campus, 17
Woodlands Dr 17, Singapore

Ishara Maduka
Woodlands Health Campus, 17
Woodlands Dr 17, Singapore

Tentacles of trouble: Small bowel obstruction secondary to multiple squid bezoars

Si Jia Wee, Wei Chong Chua and Ishara Maduka

DOI: <https://www.doi.org/10.22271/27081494.2026.v8.i1a.252>

Abstract

Summary: Bezoars are a rare cause of gastrointestinal obstruction, most commonly composed of plant material, hair, or medications. We report the case of a woman in her 70s who presented with small bowel obstruction secondary to multiple squid bezoars. Computed tomography did not identify a bezoar, and the diagnosis was made intraoperatively following exploratory laparotomy, enterotomy, and removal of multiple bezoars. Her postoperative course was complicated by ileus requiring temporary parenteral nutrition; however, she progressed to oral intake by postoperative day 9 and has since recovered well.

Keywords: Bezoar, small bowel obstruction, squid bezoar

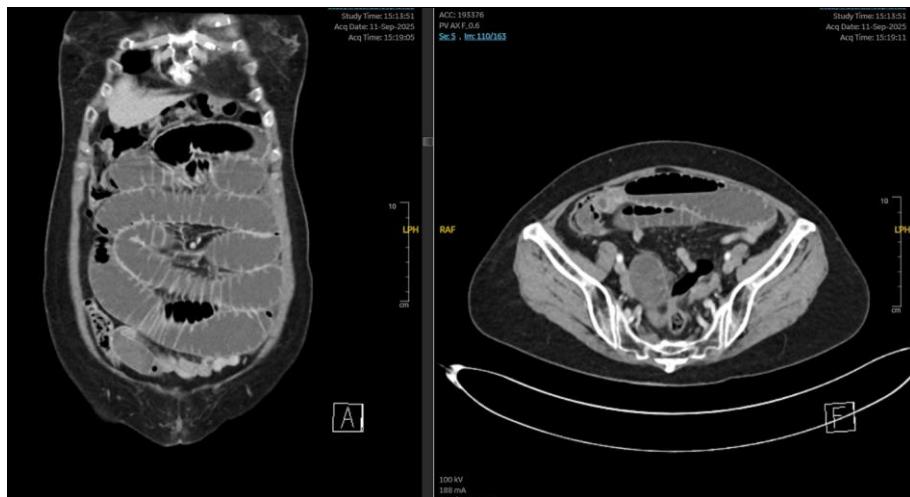
Introduction

Background

Bezoars are a rare cause of gastrointestinal obstruction, accounting for approximately 0.4-4% of cases of mechanical small bowel obstruction [1]. They are classified according to their composition, most commonly phytobezoars (indigestible plant material), trichobezoars (hair), pharmacobezoars (medications), and lactobezoars in neonates [3]. Bezoars typically form within the stomach and may subsequently migrate distally, most frequently lodging in the jejunum or terminal ileum where the luminal diameter narrows [2, 4].

Several predisposing factors have been described, including prior gastric surgery (eg, gastrectomy, vagotomy, bariatric procedures), which alters gastric motility, acidity, and pyloric function [5, 6]. Other recognised risk factors include gastroparesis, diabetes mellitus, systemic sclerosis, hypothyroidism, and impaired mastication due to poor dentition or ill-fitting dentures [3, 6]. In the present case, the absence of prior gastric surgery suggests that poor dentition and inadequate mastication were likely contributory factors.

Clinical presentation varies according to bezoar location. Gastric bezoars may cause dyspepsia, early satiety, epigastric pain, nausea, vomiting, gastric outlet obstruction, or upper gastrointestinal bleeding secondary to mucosal ulceration [3, 7]. In contrast, intestinal bezoars more commonly present with features of acute or subacute small bowel obstruction and are frequently diagnosed intraoperatively [2, 4].


This case illustrates the limitations of CT in diagnosing small bowel obstruction secondary to bezoars, particularly when the composition is atypical. Squid bezoars are exceedingly rare and described only sporadically in the literature. In patients with poor dentition and likely inadequate mastication, bezoars should be considered in the differential diagnosis of small bowel obstruction.

Case presentation

A South-East Asian woman in her 70s with a history of bilateral tubal ligation presented to the emergency department with right-sided abdominal pain for five days, beginning after a meal. This was associated with abdominal distension, constipation for five days, and obstipation for one day. She reported nausea without vomiting and a reported low-grade fever.

On examination, the abdomen was soft with right flank tenderness, without rebound or guarding. Bowel sounds were sluggish. Laboratory investigations were unremarkable, with a C-reactive protein of 36.9 mg/L, total white cell count of $8.3 \times 10^9/L$, and lactate of 0.9 mmol/L. Contrast-enhanced CT of the abdomen and pelvis revealed small bowel obstruction with a transition point in the distal ileum, but no definite lesion was identified (figure 1).

Corresponding Author:
Si Jia Wee
Woodlands Health Campus, 17
Woodlands Dr 17, Singapore

Fig 1: Contrast-enhanced CT of the abdomen and pelvis demonstrating a transition point in the distal ileum.

A nasogastric tube was inserted, draining 369 mL of gastric content. The working diagnosis was adhesive small bowel obstruction, and the patient was managed conservatively with intravenous fluids and decompression, with a plan for Gastrografin study if there was no improvement after 48 hours.

By hospital day 3, the patient developed increasing abdominal tenderness and underwent emergency exploratory laparotomy. Intraoperatively, the small bowel was markedly dilated, and a large intraluminal bezoar was identified 20 cm proximal to the ileocaecal valve, causing complete obstruction. No adhesion bands were present. Enterotomy was performed, and multiple bezoars composed of squid fragments were extracted (figure 2). The enterotomy was closed primarily.

Fig 2: Multiple intraluminal squid bezoars extracted via enterotomy.

Outcome and follow-up

The patient was admitted to the high dependency unit for monitoring and stepped down to the general ward on postoperative day (POD) 1. She experienced delayed return of bowel function, with no passage of flatus for three days, and was commenced on peripheral parenteral nutrition on POD 3.

A repeat CT of the abdomen and pelvis on POD 5 demonstrated mild small bowel dilatation without an abrupt transition point, consistent with postoperative ileus. No intra-abdominal collection was noted. She was managed conservatively, resumed oral intake with clear fluids on POD 5, and passed flatus the same day. Her diet was progressively advanced to a soft diet by POD 9, with concurrent weaning off parenteral nutrition.

Her recovery was further delayed by deconditioning, necessitating inpatient rehabilitation and physiotherapy. She was discharged well and stable on POD 13 and remained well on outpatient review.

Discussion

Computed tomography is the imaging modality of choice for small bowel obstruction and typically demonstrates a well-circumscribed intraluminal mass with a mottled gas pattern, often described as having a “floating” or “speckled” appearance [8]. However, these findings may be misinterpreted as faecalised small bowel contents, intraluminal tumour, or abscess, and preoperative diagnosis remains challenging, particularly in rare or atypical bezoars [8, 9]. This limitation was reflected in the present case, where CT imaging alone was insufficient for definitive diagnosis. Management depends on bezoar location and severity of obstruction. Endoscopic fragmentation or dissolution therapy is generally considered first-line for gastric bezoars, with reported success rates varying by composition [3, 10]. These methods are often ineffective for intestinal bezoars and carry a risk of distal migration resulting in obstruction. Surgical intervention remains the treatment of choice for intestinal bezoars, particularly in cases of complete obstruction, failure of conservative management, or concern for bowel ischaemia [2, 4, 10].

Similar cases of food-related small bowel obstruction have been reported, including mushroom [11, 12], cotton [13], and rice cake bezoars [14]. These cases demonstrate that bezoars may form from unexpected materials that are otherwise presumed to be easily digestible. While most reported cases required surgical intervention, rice cake bezoars were successfully managed conservatively. Surgical intervention should nevertheless be considered in patients with suspected bowel ischaemia or perforation, or following failure of conservative management. Collectively, these reports underscore the importance of considering bezoars in the differential diagnosis of small bowel obstruction and obtaining a detailed dietary history, particularly in high-risk patients with impaired mastication, given the limitations of imaging in establishing a definitive diagnosis.

Learning points

- Bezoars may be formed from unexpected materials that are otherwise presumed to be easily digestible

- Bezoars should be considered in the differential diagnosis of small bowel obstruction, particularly in patients with dietary risk factors or impaired mastication
- Imaging alone has limitations in establishing a definitive diagnosis of bezoar-related small bowel obstruction

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Patient consent

Patient consent for publication was obtained.

Conflict of Interest

Not available.

Financial Support

Not available.

References

1. Iwamuro M, Okada H, Matsueda K, *et al*. Review of the diagnosis and management of gastrointestinal bezoars. *World J Gastrointest Endosc*. 2015;7:336-345.
2. Yakan S, Sirinocak A, Telciler KE, *et al*. A rare cause of acute abdomen: small bowel obstruction due to bezoar. *World J Gastroenterol*. 2010;16:2273-2276.
3. Ladas SD, Kamberoglu D, Karamanolis G, *et al*. Systematic review: Coca-Cola can effectively dissolve gastric phytobezoars. *Eur J Gastroenterol Hepatol*. 2013;25:e1-e7.
4. Dikicier E, Altintoprak F, Ozdemir K, *et al*. Intestinal obstruction due to phytobezoars: an update. *World J Clin Cases*. 2015;3:721-726.
5. Krausz MM, Moriel EZ, Ayalon A, *et al*. Surgical aspects of gastrointestinal phytobezoars. *Arch Surg*. 1986;121:1019-1021.
6. Iwamuro M, Tanaka S, Shiode J, *et al*. Clinical characteristics and treatment outcomes of patients with bezoars. *Intern Med*. 2014;53:1099-1105.
7. Erzurumlu K, Malazgirt Z, Bektas A, *et al*. Gastrointestinal bezoars: a retrospective analysis of 34 cases. *World J Gastroenterol*. 2005;11:1813-1817.
8. Ripollés T, García-Aguayo J, Martínez MJ, *et al*. Gastrointestinal bezoars: sonographic and CT characteristics. *AJR Am J Roentgenol*. 2001;177:65-69.
9. Zissin R, Osadchy A, Gutman V, *et al*. CT findings in patients with small bowel obstruction due to phytobezoar. *Emerg Radiol*. 2004;10:197-200.
10. Wang YG, Seitz U, Li ZL, *et al*. Endoscopic management of bezoars. *Endoscopy*. 1998;30:371-374.
11. Pham TN, Tran MQ, Pham PC, *et al*. Shiitake mushroom bezoar: a rare cause of small bowel obstruction. *Emerg Care J*. 2025.
12. Hamzah AA, Keow CK, Syazri A, *et al*. Mushroom bezoar causing small bowel obstruction. *J Coll Physicians Surg Pak*. 2017;27:S13-S15.
13. Chintamani, Durkhure R, Singhal V. Cotton bezoar: a rare cause of intestinal obstruction. *BMC Surg*. 2003;3:5.
14. Miura T, Kimura N, Nakamura J, *et al*. Rice cake ileus: a rare but important disease in East and Southeast Asia. *Intern Med*. 2011;50:2737-2739.

How to Cite This Article

Wee SJ, Chua WC, Maduka I. Tentacles of trouble: Small bowel obstruction secondary to multiple squid bezoars. *International Journal of Case Reports in Surgery*. 2026;8(1):12-14.